For six weird weeks in the fall of 2004, Udo Wächter had an unerring sense of direction. Every morning after he got out of the shower, Wächter, a sysadmin at the University of Osnabrück in Germany, put on a wide beige belt lined with 13 vibrating pads — the same weight-and-gear modules that make a cell phone judder. On the outside of the belt were a power supply and a sensor that detected Earth’s magnetic field. Whichever buzzer was pointing north would go off. Constantly.
“It was slightly strange at first,” Wächter says, “though on the bike, it was great.” He started to become more aware of the peregrinations he had to make while trying to reach a destination. “I finally understood just how much roads actually wind,” he says. Deep into the experiment, Wächter says, “I suddenly realized that my perception had shifted. I had some kind of internal map of the city in my head. I could always find my way home. Eventually, I felt I couldn’t get lost, even in a completely new place.”
On a visit to Hamburg, about 100 miles away, he noticed that he was conscious of the direction of his hometown. Wächter felt the vibration in his dreams, moving around his waist, just like when he was awake. […]
When the original feelSpace experiment ended, Wächter, the sysadmin who started dreaming in north, says he felt lost; like the people wearing the weird goggles in those Austrian experiments, his brain had remapped in expectation of the new input. “Sometimes I would even get a phantom buzzing.” He bought himself a GPS unit, which today he glances at obsessively. One woman was so dizzy and disoriented for her first two post-feelSpace days that her colleagues wanted to send her home from work. “My living space shrank quickly,” says König. “The world appeared smaller and more chaotic.”
[…]
During a long brainstorm session, they wondered whether the tongue could actually augment sight for the visually impaired. I tried the prototype; in a white-walled office strewn with spare electronics parts, Wicab neuroscientist Aimee Arnoldussen hung a plastic box the size of a brick around my neck and gave me the mouthpiece. “Some people hold it still, and some keep it moving like a lollipop,” she said. “It’s up to you.”
Arnoldussen handed me a pair of blacked-out glasses with a tiny camera attached to the bridge. The camera was cabled to a laptop that would relay images to the mouthpiece.
I cranked up the voltage of the electric shocks to my tongue. It didn’t feel bad, actually — like licking the leads on a really weak 9-volt battery. […] I walked around the Wicab offices. I managed to avoid most walls and desks, scanning my head from side to side slowly to give myself a wider field of view, like radar. Thinking back on it, I don’t remember the feeling of the electrodes on my tongue at all during my walkabout. What I remember are pictures: high-contrast images of cubicle walls and office doors, as though I’d seen them with my eyes. Tyler’s group hasn’t done the brain imaging studies to figure out why this is so — they don’t know whether my visual cortex was processing the information from my tongue or whether some other region was doing the work.